## Renewable Energy Multi-Client Study: *The Changing* Face of Renewable Energy

### Report Outline

Participants:
We Energies
Ontario Power Generation
ARC Financial
National Renewable Energy Lab
Salt River Project
Southern Company
Los Angeles Department of Water & Power
San Francisco Public Utilities Commission
Hydro Quebec
Confidential Client

### **February 11, 2003**







Navigant Consulting, Inc. 200 Wheeler Road Burlington, MA 01803 (781) 564-9614

www.navigantconsulting.com

### Renewable Energy Multiclient Scope of Study

### **Executive Summary**

- 1. Technology Cost, Performance, and Markets
- 2. Renewable Energy Grid Integration
- 3. Certificate/Attribute and Emission Trading
- 4. Renewable Portfolio Standards
- 5. Subsidies and Renewable Energy Funds
- 6. Green Energy Business Issues
- 7. Permitting/Net Metering/Buyback Rates



The technology section of the final report will give detailed attention to the following technologies.

| Technology Focus Areas                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Primary                                                                                                                                                                                                                                                                                                                | Secondary                                                                                                                                                                                                                |  |  |
| <ul> <li>Large On-Shore Wind</li> <li>Off-Shore Wind (Ocean, Great Lakes)</li> <li>Biomass Power <ul> <li>Gasification</li> <li>Co-firing</li> <li>Digester Gas (e.g., animal waste)</li> <li>Landfill Gas</li> </ul> </li> <li>PV (flat plate – wafer and thin films)</li> <li>Low Impact Hydro (&lt; 5MW)</li> </ul> | <ul> <li>Concentrating Solar Power</li> <li>Geothermal</li> <li>Storage</li> </ul> Tertiary <ul> <li>(high level, long-term key developments only)</li> </ul> • Tidal <ul> <li>Wave</li> <li>Nano Solar Cells</li> </ul> |  |  |

**Inverters:** NCI will present current and projected costs, general performance data, and profile the top three suppliers to the PV industry for grid-connected systems



## For each primary and secondary technology, NCI will cover technology performance, price, and market drivers and barrier issues.

| Technologies –Topic Areas and Level of Focus                                                                                                                                                                                                                                                                  |                         |                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--|
| Topic Areas                                                                                                                                                                                                                                                                                                   | Primary<br>Technologies | Secondary<br>Technologies |  |
| <ul> <li>Technology Performance in (2003 – 2013)</li> <li>System Electrical Efficiency</li> <li>Duty Cycle and Capacity Factor</li> <li>Expected Lifetime</li> <li>O&amp;M Requirements</li> <li>Typical Size</li> <li>Typical Emissions</li> <li>Other Performance Issues (e.g. noise, water use)</li> </ul> |                         |                           |  |
| • Economics (2003 – 2013)                                                                                                                                                                                                                                                                                     |                         |                           |  |
| Market Drivers & Barriers (e.g., land use)                                                                                                                                                                                                                                                                    |                         |                           |  |
| <ul> <li>Market Size or Technical Potential (U.S./Canada/Europe (PV, wind)/ World)</li> <li>MW/yr for 2002 – 2013</li> </ul>                                                                                                                                                                                  |                         |                           |  |
| <ul> <li>Key Players         <ul> <li>Manufacturers, developers, owner/operators</li> <li>Overview, Strengths, and Weaknesses</li> </ul> </li> </ul>                                                                                                                                                          |                         |                           |  |





# A table similar to the one below will be used to document technology performance characteristics.

| Flat Plate Photovoltaics                                                                  |       |            |       |            |       |            |
|-------------------------------------------------------------------------------------------|-------|------------|-------|------------|-------|------------|
| Characteristics                                                                           | 2003  |            | 2008  |            | 2013  |            |
|                                                                                           | Wafer | Thin Films | Wafer | Thin Films | Wafer | Thin Films |
| System Electrical Efficiency (%)                                                          |       |            |       |            |       |            |
| Equipment Life (yrs)                                                                      |       |            |       |            | 2.    |            |
| Typical Emissions<br>(grams/kWh)<br>CO <sub>2</sub><br>SO <sub>2</sub><br>NO <sub>x</sub> |       |            | ustr  | ativ       |       |            |
| Duty Cycle<br>(hrs/yr)                                                                    |       |            |       |            |       |            |
| Typical Size                                                                              |       |            |       |            |       |            |
| Maintenance<br>Requirements                                                               |       |            |       |            |       |            |

Sources: Assumptions:



## For each technology, we will also estimate levelized costs and provide the associated assumptions for 2003-2013.

| Wind Energy                                                                                                                              | 2003              | 2008              | 2013              |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|
| Typical Size (kW)                                                                                                                        | TBD               | TBD               | TBD               |
| Installed System Price (\$/kW) <sup>1</sup>                                                                                              | TBD               | TBD               | IBD               |
| O&M Costs (\$/kW-yr) <sup>1</sup>                                                                                                        | TBD               | TBD               | IRD               |
| System AC Output (kWh/kW-yr) High Wind Speed Area <sup>2</sup> Moderate Wind Speed Area <sup>3</sup> Low Wind Speed Area                 | TBD<br>TBD        | S TBD             | TBD<br>TBD        |
| Cost of Electricity (¢/kWh) 5,6 High Wind Speed Area <sup>1</sup> Moderate Wind Speed Area <sup>2</sup> Low Wind Speed Area <sup>4</sup> | TBD<br>TBD<br>TBD | TBD<br>TBD<br>TBD | TBD<br>TBD<br>TBD |

Notes:

- 1. Real 2003 \$.
- 2. Capacity Factor for Class 6 Winds (8m/s or 17.9mph @ 50m hub height) = 38% 2002, 40% 2005, 43% in 2010.
- 3. Capacity Factor for Class 4 Winds (7m/s or 15.7mph @ 50m hub height) = 30% 2002, 32% 2005, 35% in 2010.
- 4. Capacity Factor for Class 3 Winds
- 5. To be based upon agreed to financial assumptions
- 6. Levelized busbar costs

We will use real data when available for 2003 and provide forecasts based on NCI analysis and industry interviews.





## Key market drivers and barriers will be defined for key market segments.

| Flat Plate Photovoltaics  |                |                 |  |
|---------------------------|----------------|-----------------|--|
| Segments                  | Market Drivers | Market Barriers |  |
| Grid-Connected<br>Central | • TBD          | • TBD           |  |
| Residential<br>Rooftop    | • TBD          | · TBD           |  |
| Building<br>Shingles      | •TBD           | FBD             |  |
| Commercial<br>Rooftop     | • TBD          | • TBD           |  |
| Curtainwall               | • TBD          | • TBD           |  |



For the primary technologies, we will provide company profiles of the top 3 players for each technology for each major step of the value chain.

|                                                                             | Manufacturer | Integrator<br>/Installer | Project<br>Developer | Project Owner/<br>Operator |
|-----------------------------------------------------------------------------|--------------|--------------------------|----------------------|----------------------------|
| Wind                                                                        |              |                          |                      |                            |
| Biomass<br>(gasification, co-<br>firing, landfill<br>gas, digester<br>gas)* |              |                          |                      |                            |
| Flat Plate PV                                                               |              |                          |                      |                            |
| Inverters                                                                   |              |                          |                      |                            |
| Low Impact<br>Hydro (<5MW)                                                  |              |                          |                      |                            |

<sup>\*</sup>Due to the emerging and fragmented nature of this segment, NCI will provide a listing of the key technology providers/developers for each of these four subcategories and will provide high-level profiles for the top two manufacturers in each subcategory.



## A sample template for the type of company information to be provided is presented below.

### **NEG Micon - Manufacturer Company Overview Business Strategy** • If Project Owner/Developer discuss ownership structure e.g. PPA or equity positions Illustrative **Commercial Advantages** • TBD **Product Focus** • TBD Markets/Geographic Focus • TBD Other Information Typical Revenues/Sales (MW/yr.) Market Position **Competitiveness of Products** Strengths Weaknesses • TBD • TBD



Renewable energy grid integration will address market and technical aspects of interconnecting intermittent resources to the grid.

| Renewable Energy Grid Integration                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Variability                                                                                                                                                                                                                                                                                                                                                                                                                      | Storage                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| <ul> <li>Review technical impacts of output variability on transmission and distribution systems</li> <li>Assess market cost and resource planning implications of connecting intermittent generators</li> <li>Examine lessons learned from the past through case studies of North America, Europe, and Australia experience</li> <li>Identify and characterize successful market and technical integration practices</li> </ul> | <ul> <li>Discuss storage issues relative to intermittency/variability</li> <li>Review current and upcoming technical options (e.g. flow batteries, compressed air storage, hydrogen) that could minimize or eliminate variability issues</li> <li>Provide high-level discussion of hybrid systems</li> <li>Examine market drivers/barriers</li> <li>Discuss storage impact on value</li> </ul> |  |  |
| Interconnection                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| High level review of interconnection issues                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |



Certificate/attribute and emission trading will review rules and regulations, market drivers, certificate value price ranges, and market trends.

### **Certificates/Attribute and Emission Trading**

- Review EU, U.S. & Canada certificate program status and trends (2003 2008)
- Identify regulatory and market drivers
- Discuss the range of possible REC and emission values under different conditions (2003-2013)
- Describe structure/fees/market mechanisms for programs
- Assess implications for utility resource planning
- Assess implications for regulated vs. competitive markets
- Assess RECs impact on renewable energy market growth in the U.S. and Canada
- Describe the types of certifying groups available
- Discuss interplay between RECs and emission trading markets, including CO<sub>2</sub>
- Describe the impact of following Kyoto Protocol and what that will mean for renewables
- Assess green tags distinctions for technologies (e.g., green tags are not equal for PV vs. landfill gas)
- Assess implications and sustainability of green tags over long term



The study will also assess the status and projections for Renewable Portfolio Standards in the U.S. and Canada.

#### Renewable Portfolio Standards

- Review the status and projections for RPS in the U.S. and Canada
- Review how costs for meeting RPS are being recovered by munis, IOUs
  - In regulated and unregulated markets
- Assess the longevity of these regulatory schemes
- Review different State and Provincial standards and their focus areas
  - Present successes and lessons learned to date
  - Define elements of a successful RPS
- Discuss the likelihood of a Federal RPS in the U.S. and how it might affect State RPSs
  - What would a good Federal RPS look like
  - How would it vary geographically & what would be the regional affects (e.g., one size does not fit all)
- Identify various cost impact models that are available
- Assess trends as to what technologies are defined as eligible renewables
- Review the issue of supply vs. demand (e.g., supplying a product that no one wants to buy)
- Does a RPS go against the rules of NAFTA? Are there inconsistencies?



NCI will characterize U.S. renewable energy funds and assess the impact of typical subsidies.

#### **Subsidies and Renewable Energy Funds**

- Provide a high-level review of U.S. state renewable energy funds
- Assess the value and impact of typical subsidies
  - What are typical State or Provincial level subsidies and how do they impact renewable energy economics?
  - What incentives are available at the Federal level and what would be the impact on renewable energy economics of proposed legislation?



### NCI will identify renewable energy business model options.

#### **Green Energy Business Issues**

- Define clean vs. green vs. renewable
- Identify renewable energy business model options that are available
  - Should companies accept a lower return to include renewable energy in their portfolios?
  - What are the advantages of various commercial approaches?
    - Ownership structure, power purchase agreements, debt/equity structure
- Identify <u>sources</u> for assessing lessons learned from voluntary green power programs



We will review regulatory issues such as permitting, net metering, and buyback rates.

#### **Permitting/Net Metering/Buyback Rates**

- Permitting issues
  - What are successful ways States/Provinces have dealt with permitting?
  - Regulatory regimes are old and do not effectively address new issues and priorities (e.g. local permitting vs. Kyoto requirements)
- Net metering Buy-back rates
  - Provide a matrix showing preferred mechanisms by technology and by size
  - Identify "Best Practices"

